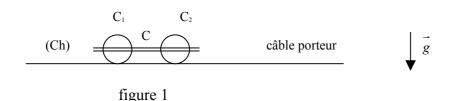
MECANIQUE

Présentation générale

L'objet de ce problème est d'étudier divers aspects dynamiques du mouvement de la benne d'un téléphérique. Celui-ci est constitué d'un câble porteur sur lequel peut se déplacer un chariot (Ch) qui comporte deux roues identiques de centres C₁ et C₂ et qui roulent sur le câble.

Dans tout le problème le câble sera supposé être parfaitement horizontal (cf. figure 1):



Un bras (T) est articulé sur le chariot en C au milieu des centres C_1 et C_2 des roues. La benne (B) est liée au point A situé à l'extrémité inférieure du bras.

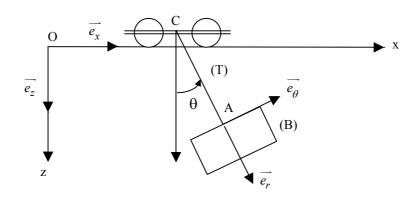


figure 2

Notations et valeurs numériques

Le chariot est de masse totale $m_C = 200 \text{kg}$; les centres des roues sont séparés par la distance d = 1 m.

Les roues ont une masse $m_r = 40 \text{ kg}$, un rayon r = 20 cm et un moment d'inertie par rapport à leur axe de rotation $J = m_r r^2/2$. L'ensemble est homogène, le centre de masse de l'ensemble est donc situé en C.

Le coefficient de frottement entre les roues et le câble est f = 0,1.

Le bras (T) est de masse $m_T = 300 \text{ kg}$ et de longueur L = 3 m.

La benne (B) est homogène de masse $m_B = 2000 \text{kg}$.

La masse de l'ensemble est donc $M = m_T + m_C + m_B$.

On désigne par a la distance entre C et G, G étant le centre de masse de <u>l'ensemble (T) et (B)</u>. a = 4.5 m.

 Δ désigne l'axe de rotation de l'ensemble (T) et (B) passant par C et J_{Δ} son moment d'inertie par rapport à Δ .

Dans tout le problème le champ de pesanteur \vec{g} est supposé uniforme, de norme $g = 9.8 \text{ m.s}^{-2}$.

Paramétrages

L'étude est réalisée dans le référentiel terrestre R supposé galiléen auquel est associé un repère orthonormé $(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ avec $\overrightarrow{e_z}$ dirigé vers le bas, $\overrightarrow{e_x}$ colinéaire au câble, O situé à l'extrémité gauche du câble.

La réaction du câble sur la roue n°i est désignée par $\overrightarrow{R_i} = \overrightarrow{T_i} + \overrightarrow{N_i}$ avec $\overrightarrow{T_i} = T_i \overrightarrow{e_x}$ et $\overrightarrow{N_i} = N_i \overrightarrow{e_z}$ (i=1 ou 2).

ω_i désigne la vitesse angulaire de la roue n°i.

On désigne par x l'abscisse de C et par θ l'angle entre $\overrightarrow{e_z}$ et \overrightarrow{CA} . On pourra introduire une base locale $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$ en A avec $\overrightarrow{e_r} = \frac{\overrightarrow{CA}}{L}$ et $(\overrightarrow{e_r}, \overrightarrow{e_\theta}) = \pi/2$.

Toutes les liaisons sont supposées parfaites.

I. Préliminaire

- 1. Rappeler le théorème du moment cinétique appliqué à un solide S en un point O fixe dans un référentiel galiléen *R*.
- **2.** On se place dans un référentiel R', d'origine A, en translation par rapport à R.
 - a) Donner l'expression de la force d'inertie subie par un point matériel M de masse m en fonction de l'accélération $\vec{a}(A)_{/R}$ de A dans R.
 - b) Donner l'expression du théorème du moment cinétique pour un solide S de masse m en O' fixe dans R'; justifier l'existence d'un terme correspondant au moment en O' de la résultante des forces d'inertie $-m\vec{a}(A)_{/R}$ s'appliquant au centre de masse G du solide.
 - c) Si R' est le référentiel barycentrique, quel résultat retrouve-t-on?

II. Oscillations de la benne

- 1. On effectue un essai d'oscillation de la benne, le chariot étant maintenu immobile dans R.
 - a) Etablir l'équation différentielle vérifiée par θ .
 - b) Dans le cas des petites oscillations, on mesure une période Ti=4,6s. En déduire la valeur de J_{Δ} .
 - c) Sachant que le bras (T) a un moment d'inertie par rapport à Δ , $J_{T\Delta} = m_T L^2/3$, déduire la valeur de $J_{B\Delta}$, moment d'inertie de (B) par rapport à Δ .
- 2. Le chariot est mis en mouvement par un câble tracteur qui exerce une force de traction appliquée en C, $\vec{T} = To.\vec{e_x}$. Les roues roulent sans glisser sur le câble.

- a) Appliquer le théorème du moment cinétique à la roue 1 dans son référentiel barycentrique et en déduire une relation entre $\frac{d^2x}{dt^2}$ et T_1 . Quelle relation similaire obtient-on avec la roue 2 ? En déduire la relation entre T_1 et T_2 .
- **b)** Montrer que l'accélération du centre de masse G' de l'ensemble (Ch), (T), (B) dans le référentiel R, se met sous la forme $\vec{a}(G') = A_1 \cdot \vec{e_r} + A_2 \cdot \vec{e_\theta} + \frac{d^2x}{dt^2} \vec{e_x}$ où A_1 et A_2 sont des expressions que l'on explicitera.
- c) Appliquer le théorème de la résultante cinétique à l'ensemble (Ch), (T) et (B) dans R et projeter sur l'axe Ox pour obtenir une équation (1) faisant intervenir To.
- d) Montrer que dans le cas des petites oscillations, les termes quadratiques en θ et $\frac{d\theta}{dt}$ étant négligés, l'équation (1) devient $K_1 \frac{d^2x}{dt^2} + (m_T + m_B) a \frac{d^2\theta}{dt^2} = To$ (2) où K_1 est un coefficient que l'on explicitera.
- e) On se place dans le référentiel R', d'origine C en translation par rapport à R. Appliquer le théorème du moment cinétique à l'ensemble (T) et (B) pour obtenir, dans le cas des petites oscillations, une équation (3).

 Montrer que (3) se met sous la forme $\frac{d^2\theta}{dt^2} + K_2 \left(g\theta + \frac{d^2x}{dt^2}\right) = 0$ où K_2 est un coefficient que l'on explicitera.
- f) Déduire des équations (2) et (3) une équation différentielle linéaire en $\theta(t)$. Quelle est la pulsation des petites oscillations ? Calculer la valeur numérique de la période. Conclure dans le cas où la benne est destinée au transport des passagers.
- g) On souhaite donner à la benne une accélération $\gamma o = 0.8~\text{ms}^{-2}$. Pour cela, à l'instant t = 0, on fait passer la tension d'une valeur nulle à la valeur $To = K_1 \gamma o$. Initialement la benne est au repos ; déterminer $\theta(t)$ pour t positif. Calculer en degré l'amplitude des oscillations.

3. Condition de non glissement.

Dans ce paragraphe on considère que $\theta = 0$. La force de traction est maintenue.

- a) Déterminer le moment cinétique de l'ensemble du chariot par rapport à l'axe Δ .
- **b)** En déduire une relation liant les composantes des réactions du câble sur les roues, l'accélération angulaire des roues et les caractéristiques du chariot.
- c) Déterminer une autre relation ne portant que sur les composantes normales des réactions.
- d) Dans le cas où le chariot a une accélération $\gamma o = 0.8 \text{ m.s}^{-2}$, déterminer s'il y a glissement ou non.

III. Oscillations du câble porteur

Dans cette question on considère que le chariot est immobile dans un référentiel lié au câble. La prise en compte de l'élasticité du câble porteur revient à considérer que C peut se mouvoir verticalement selon O'z, le point O' étant fixe. Le câble se comporte alors comme un ressort de raideur k, d'extrémité fixe O' et de longueur à vide lo.

- 1. Lorsque l'on introduit une masse de une tonne dans la benne, celle-ci descend de 0,5m. Quelle est la raideur du ressort équivalent ?
- **2.** On se place dans une situation où la benne, toujours liée au bras (T), peut osciller dans un mouvement pendulaire.

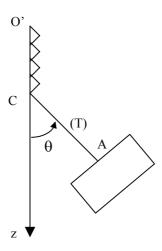


Figure 3

Le chariot est confondu avec le point C, de masse m_C ; on pose $\overrightarrow{O'C} = z.\overrightarrow{e_z}$.

- a) Déterminer l'accélération de G', centre de masse de l'ensemble (Ch), (B), (T) dans R, en utilisant les vecteurs $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$.
- b) Déterminer une équation différentielle liant z(t) et $\theta(t)$ par application du théorème de la résultante cinétique à l'ensemble (Ch), (T) et (B).
- c) Déterminer la position d'équilibre de C de côte z_e , lorsque la benne n'oscille pas. En déduire l'équation différentielle vérifiée par $Z = z z_e$ et $\theta(t)$.
- d) Que devient cette équation dans le cas des petites oscillations ? Mettre cette équation sous la forme d'une équation différentielle en Z(t) avec un second membre dépendant de $\theta(t)$ et de ses dérivées.
- e) En déduire Z(t) en régime forcé lorsque $\theta = \theta \cos(\omega t)$ avec $\omega = 2\pi/4,6 \, \text{rad.s}^{-1}$ et $\theta o = 0,1 \, \text{rad}$.

Fin de l'énoncé